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abstract

Browser-based tools collected quantitative data from students in introductory chemistry at the tertiary level. A word-

problem tool used a set of variables generated by an algorithm. A second tool was for drawing Lewis dot structures, 

including atoms, electrons, bonds and charges. The third tool examined the particulate nature of matter in which 

spheres represent atoms, ions or molecules. In addition, eye-tracking hardware examined proton NMR problems and 

finding structural features.
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resum

Es recullen dades quantitatives d’estudiants de química introductòria de l’àmbit universitari amb eines basades en 

un navegador. Una eina de problemes de paraules utilitza un conjunt de variables generades per un algoritme. Una 

segona eina dibuixa estructures de Lewis amb punts, incloent-hi àtoms, electrons, enllaços i càrregues. La terce-

ra eina examina la naturalesa de partícules de la matèria en què les esferes representen àtoms, ions o molècules. 

A més, s’utilitza el programari de seguiment ocular per analitzar problemes d’RMN de protó i per trobar funcions 

estructurals.

paraules clau
Resolució de problemes, resolució de problemes de paraules, representació d’estructures de Lewis, eines basades en 

un navegador, seguiment ocular.

Introduction
In addition to providing basic 

evidence, studies in chemistry 
education research enable 
application of the research 
findings into improvements to the 
teaching and learning of chemis-
try. Introductory science or 
chemistry classes at the tertiary 
level have elicited a persistent set 
of questions: do we try to teach 
too much? Should we stress 
theory or facts, and in what 
order? How does content deliver 
(i.e., pedagogy) come into play? 

Although current educators might 
find these questions relevant, 
they appeared in a paper that 
collected data from twenty-eight 
universities in the US in 1924 
(Cornog & Cobert, 1924). For 
example, a characterization of the 
contemporary content of college 
chemistry texts appears in fig. 1. 
Although this might serve as an 
early example of discipline-based 
education research, more refined 
research questions and methods 
have been applied in this work. 
Several tools and methods were 
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Figure 1. College chemistry text content, 
circa 1924 (Cornog & Cobert, 1924).



utilized to examine student 
approaches and steps in solving 
word questions and in drawing or 
interpreting chemical structures.

Solving word problems
Educators employ questions to 

assess student knowledge about 
content and about their ability to 
formulate a strategy to solve 
them. Many instructors would 
consider questions about the 
application of an ideal gas law  
(i.e., what is the final volume at 
the final temperature if the initial 
volume and temperature are 
given) as simple exercises rather 
than problems. These questions 
apply a small amount of concep-
tual knowledge but a set of skills 
to solve a numerical version. 
Nonetheless, the question form 
allows one to examine the role of 
cognitive or memory load, espe-
cially because the software could 
generate a large number of 
variants based on a small number 
of variables. Cognitive load was 
first described by Miller (1956) and 
refers to an adult’s ability to store 
seven plus or minus two items in 
short term memory. Thus, a 
learner can «collect» a set of 
separate items that are treated as 
such in memory until that person 
processes them into longer term 
memory or existing knowledge. 
This processing of disparate items 
into an outline or model (often 
called schema in cognitive science) 
requires that the learner have 
some previous knowledge to do so. 
These phenomena have been 
extensively characterized includ-
ing examples of mathematics or 
science learning (Sweller, Ayres & 
Kalyuga, 2011; Plass, Moreno  
& Brün ken, 2010). Johnstone (2006) 
provides evidence from chemistry 
questions that shows a precipi-
tous drop in student success when 
those questions exceed seven 
memory components.

A browser-based tool with 
Flash™ scripting language was 

designed and implemented to 
examine student performance on 
word questions (Schuttlefield et al., 
2012; Tang & Pienta, 2012; Tang, 
Kirk & Pienta, 2014). The first such 
tool creates questions about the 
ideal gas law in which the student 
is asked to determine the final 
volume of a gas at a final tempera-
ture if the gas was originally at a 
different volume and temperature. 
An example is given here:

An ideal gas occupies an 

initial volume of 6.22 L at a 

temperature of 262 K. What is 

the final volume in units of L 

if the temperature is changed 

to 289.6 K while the pressure 

of the system is maintained 

at a constant value? Assume 

that no chemistry occurred 

and there is no change in the 

amount of material.

The software generates the 
questions using five factors 
shown in table 1: gas identity, 
format of numbers used, initial 
and final temperature units, 
initial and final volume units, and 
a value for the constant pressure.

Thus, each question contains 
one of the possible variants for 
each of the five factors, randomly 
selected by the software. In 
addition, the numerical values for 
each item was also randomly 
selected by the algorithm. For the 
volume-temperature VT ques-
tions, there are 432 unique 
possibilities that could be as-
signed, based on individual 
options for each factor. The 
browser-based nature of the tool 
allowed the collection of > 3 000 
individual attempts over two 
populations at the college level: 
the students in the first semester 
of a two-semester general chem-
istry sequence or students in a 
one-semester preparatory chem-
istry course. Logistic regression 
was used to analyze the results 
(Legg, Greenbowe & Legg, 2001). 
The log-odds function is given in 
the equation: p is the fraction of 
answers that are correct, and the 
dependence β (i.e., β 0, β 1, β 2, etc.) 
is determined for each variable 
(i.e., X1, X2, etc.):
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Gas identity

— An ideal gas.
— A mixture of ideal gases…

— An unknown gas with a MW  
of 44…

Volume numbers

— 1.23 (general).
— 1.23E6 (scientific notation).

— 0.0012 (decimal).

Volume units

— L to L.
— mL to mL.

— mL to L.
— L to mL.

Temperature units

— K to K.
— °C to K.

— K to °C.
— °C to °C.

Pressure units and value

— Blank.
— atm.

— torr.

Table 1. Factors and possible variants for gas law questions



Fig. 2 contains the data from 
the logistic regression of the data 
divided by population, prep chem 
and gen chem. The values of β 
come from the logistic regression 
function, while sig refers to the 
statistical significance of each of 
the entries (i.e., significance at  
< 0.05 at the 95 % confidence level). 
For each factor, a negative β 
means that the problems are 
more difficult (i.e., lower success). 
Bolder entries are statistically 
significant, while the gray entries 
are not.

The questions with the 
scientific notation number format 
apparently are solved at a lower 
success rate. The questions with a 
temperature conversion from ºC 
to ºC are more difficult either 
because students are unable to 
make two conversions from ºC  
to K or more likely because they 
forgot to do so. In cases where 
both units appear in the question, 
the users are likely reminded to 
change units. The volume de-
pendence is quite interesting. 
Compared to the default con-
version of L to L, mL to mL conver-
sions are more difficult. However, 
mL to L problems are completed 
at different success rates than 
ones with L to mL, with the  
latter ones apparently being 
much more difficult. (Please note 
that the function is logarithmic.) 
The expectation that students 
would simply use algorithms like 
dimensional analysis would lead 
to identical β values, but this was 
not the case. Although many 
educators would agree that these 
are simple exercises, but the 
inclusion of several «distractors» 
in the questions greatly reduces 
student success. Although 
numerical values were not 
ascribed to the short-term 
memory load, cognitive load is 
most likely an underlying cause. 
It should also be pointed out that 
this experiment represents a 
general method for investigating a 

series of factors; it would be a 
great challenge to simultaneously 

examine 432 possibilities using 
paper quizzes or assignments.
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Figure 2. Outcomes from logistic regression analysis of ideal gas questions (Schut-
tlefield et al., 2012).

Alumina identity

— Blank.
— «Aluminum oxide occurs naturally as the mineral corundum».
— «Aluminum oxide is the main component of the gemstone…».

Equation

— Balanced eqn given.
— Word equation: «Synthetic aluminum oxide is formed by…».
— Unbalanced eqn given.

Numbers

— Gen number (1.23).
— Scientific notation (1.23E6).
— Decimal (0.012).

Units

— Mol to mol.
— g to mol.
— Mol to g.
— g to g.

Stoichiometry / substance: «Find…»

— Amount of aluminum oxide formed from aluminum hydroxide.
— Amount of water formed from aluminum hydroxide.
— Amount of aluminum hydroxide needed to form aluminum oxide.

Table 2. Factors and variables in the stoichiometry questions



In addition to the observations 
from the ideal gas questions, a 
similar experiment was conduct-
ed with some stoichiometry 
problems. Based on a chemical 
reaction equation (i.e., a balanced 
equation, unbalanced equation  
or equation only given as words), 
students were asked to determine 
the amount of material produced 
or consumed based on the 
another amount of material in 
that equation. The factors are 
given in table 2: there are six 
factors accounting for 324 unique 
questions formats.

The numerical values were 
again generated by the algorithm. 
The > 2 000 attempts were again 
collected from general chemistry 
and preparatory chemistry 
students and are shown in fig. 3.

Neither the alumina identity 
or substance for which the target 
calculation must be performed 
showed any differences that were 
statistically significant. As in the 
case of the ideal gas questions, 
those items with scientific 
notation led to lower success 
rates. Among the preparatory 

chemistry cohort, the questions 
with unbalanced equations or  
the word version of the equation 
prove to be a challenge. The 
general chemistry students  
were not distracted by those 
differences. Again, the unit 
conversations provided the  
largest effects: all three alterna-
tives to conversions of mol to  
mol were significantly more 
difficult. Overall, additional 
complexity in the problems led  
to lower success, results that  
are once again explainable based 
on cognitive load.

Additional studies on the 
student approaches to word 
problems were conducted using 
eye-tracking methods. A Tobii 
Technology eye-tracking device 
employs an infrared source to 

generate reflection patterns from 
the dark portion of the pupil of the 
eyes (Tobii Technology eye-tracking 
hardware, 2017). The eye-track-
ing hardware is contained in the 
base of a 17-inch LCD monitor that 
is connected to a computer  
that collects the 3-D position of 
each eye and pupil size; analysis 

of these data enable detection of 
the gaze position, gaze duration 
and, over time, a pattern of 
locations. Eye-tracking methods 
have found many applications in 
cognitive science and in applica-
tions in various content disci-
plines (Duchowski, 2007).

For the gas law and stoichiom-
etry questions, eye-tracking data 
were collected from a somewhat 
modified screen compared to the 
browser-based tool alone. Thus, 
the word-problem tool, a calcula-
tor and a white board were all 
placed on the same screen. The 
«white board» drawing area was 
intended to capture student work 
without the need for them to look 
away from the data collecting 
monitor (using paper and pencil 
would interrupt the continuous 
monitoring of the test subjects). 
Sample gaze data appear in fig. 4, 
in which the gaze duration is 
integrated into a «heat map». The 
brighter the colors (i.e., red),  
the longer the duration of the 
subject. Note that the test subject 
either spent longer times looking 
at certain words or returned to 
those words more often within 
the word-problem tool. The 
calculator and drawing/planning 
tool also appear to be used 
extensively.

The eye-tracking data was 
used to compare the behavior of 
students who were more and less 
successful at solving the ideal gas 
law and stoichiometry problems. 
The total time used to read the 
word questions the first time is 
defined as the reading phase. The 
time between the reading and  
the use of the calculator was 
designated as the planning phase. 
The time using the calculator is the 
third measured value. Overall 
times are the sum of the three 
individual ones. Fig. 5 shows a 
comparison of each user group 
for all of the analysis times, while 
table 3 compares the p value for 
statistical significance.

M
on

og
ra

fi
a 

/ 
N

ov
es

 t
ec

n
ol

og
ie

s

57

St
u

d
yi

n
g 

st
u

d
en

t 
ch

em
is

tr
y 

sk
il

ls
 u

si
n

g 
br

ow
se

r-
ba

se
d

 t
oo

ls
 a

n
d

 e
ye

-t
ra

ck
in

g 
h

ar
d

w
ar

e

Figure 3. Outcomes from logistic regression analysis of stoichiometry questions.



For the ideal gas law ques-
tions, the planning phase is 
statistically significant between 

the successful and less successful 
students. The overall time is 
approaching significance. In the 

stoichiometry comparison, the 
overall time is statistically 
significant. For both tools, the 
reading phase shows no differ-
ence, a result that serves as a 
control experiment at least for 
that portion of the activity. Thus, 
the eye-tracking data is an 
alternative method to gather 
information about cognitive 
issues related to solving the word 
problems. In addition, for the 
stoichiometry questions, students 
who participated in the eye-track-
ing portion could «think aloud» 
while they solved the problems 
simultaneous with the measure-
ment of the gaze data. In general, 
the more successful students had 
better strategies or had better 
plans to answer the questions.

Drawing Lewis structures  
and molecules

Another two browser-based 
tools collect information related 
to student-drawn representations. 
A Lewis dot structure drawing 
tool provides a drawing area into 
which the user can drag and drop 
atoms, electrons (i.e., as a dot or 
series of dots), bonds (i.e., lines  
or set of lines) and charges. The 
tool is «free-form» allowing  
the student to place those items 
anywhere in the drawing area. 
(Some guidance is provided about 
appropriate spacing to have the 
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Figure 4. Overall gaze duration (a.k.a. heat map) for one subject’s use of the word-
problem tools (Tang & Pienta, 2012).

Figure 5. Average time for each phase in successful and unsuccessful students using the word-problem (left) and stoichiome-
try-problem (right) tools (Tang & Pienta, 2012; Tang, Kirk & Pienta, 2014).

Table 3. Statistical comparison of average time of phases using the word and 
stoichiometry questions

Ideal gas Stoichiometry

Phase Significance (p) Significance (p)

Read 0.867 0.465

Plan 0.019 0.100

Calculate 0.414 0.100

Overall 0.084 0.018



tool recognize the work correctly.) 
The tool also allows the compo-
nents to be moved and deleted;  
a view of the interface and a 
partially drawn structure is 
shown in fig. 6.

The Lewis structure drawing 
tool randomly assigns a structure 
from one of twenty-four possibili-
ties: BF4

−, BH3, BH4
−, CH2Cl2, 

CH2ClF, CH3Cl, CO2, CO3
2−, CS2, 

H3O+, HCN, HNO, N3
−, NH3, NH4

+, 
NO2, NO3

−, O3, OCCl2, OCH2, OCN− 
PCl3, SCN−, and SO3 (Pienta, 2017). 
The tool tracks each step taken 
by user, and when submitted, 
provides feedback about whether 
the structure appears to be 
correct. (A few structures can be 
represented by resonance struc-
tures and common versions are 
recognized by the software.) 
Reasons for being incorrect  
can include: wrong atoms,  
wrong number of electrons, wrong 
electron locations and missing 
charges. Three cohorts of stu-
dents (i.e., preparatory chemistry, 
general chemistry, organic 
chemistry) are compared based 
on their percentage correct of 
each structure and the percent-
age of errors for incorrect struc-

tures (Pienta, 2017). Some com-
parisons are more easily 
understood than others: for 
example, BH3 is completed at the 
highest rate; BH4

− is more 
difficult because of the charge, 

and BF4
− has the lowest rate of 

success because of the charge 
and large number of lone pair 
electrons. Some of the variation 
in user success appears to be 

related to the method and degree 
of instruction. Efforts are under-
way to examine the series of 
steps or paths using pattern 
analyses.

A second tool called Spheres 
has a similar drag-and-drop 
interface, but in this case each 
type of sphere represents a 
different atom in representations 
of particulate nature of matter 
drawings. Overlapping spheres 
denote atoms in these simple 2-D 
representations.

The example (fig. 7) shows 
the reaction: H2 + Cl2 à 2 HCl. 
Again, the spheres can be 
dragged anywhere in the draw-
ing areas (i.e., start and finish), 
moved and deleted. Currently, 
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Figure 6. Lewis structure drawing tool with partial structure of ammonium ion.

Figure 7. Spheres drawing tool showing a reaction.

Some of the variation  

in user success appears 

to be related to the 

method and degree of 

instruction. Efforts are 

underway to examine 

the series of steps or 

paths using patern 

analyses



the Spheres tool is not able to 
provide feedback about whether 
a drawn representation appears 
to be correct. However, the 
drawing tool does provide the 
means to operate in a tutorial 
mode. Thus, the user is asked to 
draw a physical or chemical 
change. When the structure is 
submitted, the user is asked 
whether the equation is bal-
anced and then asked to balance 
the equation, if appropriate. 
Finally, the student is asked to 
draw a scenario where there is a 
limiting reagent. Fig. 8 shows 
some student-drawn representa-
tions from an example of the 
latter. The student was asked 
how the reaction would look on 
the molecular level if four mol 
of NO react with three mol of O2 
according to the equation: NO + 
O2 à NO2. The expectation is 
that the drawing would contain 
these components: 4 NO + 3 O2 
à 4 NO2 + O2. In this example, 
the submitted solution does not 
connect the atoms to make 
molecules and the atom count is 
not correct.

Additional examples (i.e., cor rect 
molecular structures without the 
excess reagent and completely 
correct solutions) have been 
reported (Pienta, 2017). Currently, 
extensive experiments using the 
tools are still underway (Atkinson 
& Pienta, 2017).

Relating proton NMR spectra  
to structures

Additional eye-tracking 
experiments have been used to 
examine students’ interpretation 
of proton NMR spectra (Topcze-
wski et al., 2017; Tang et al., 2012). 
Students were shown a H-NMR 
spectrum and a set of structures, 
one of which is the correct match 
to the spectral data. Each student 
is given 1 min to match the data 
with the structure, after which 
the computer goes to the next 
example. A representative exam-
ple appears in fig. 9 and the gaze 
locations can be designated into 
areas of interest (AOIs) for 
analysis as shown in fig. 10.

Data were collected from two 
groups: undergraduate students 
enrolled in the second semester of 
organic chemistry, who were 
designated as novices, and second 
and third year graduate students 
who were conducting research in 
organic chemistry, who were 
designated as «experts». Differences 
were found between the groups for 
several criteria (i.e., percent 
correct, gaze duration and search 
patterns). The search patterns 

were based on the AOIs in fig. 10. 
Each of the «boxes» are defined as 
an AOI so that all gaze locations 
within that area can be integrated. 
Then the AOIs were assigned a 
number so that string patterns 
represented a series of digit 
corresponding to those AOIs. For 
all questions: 1 = correct structure; 
2, 3, 4 = incorrect structures; 5 = 
question; 6, 7, 8, (9) = spectral 
parts, and 0 = remaining white 
space. Algorithms and analytical 
techniques were developed for  
the search protocol (Tang et al., 2012). 
Search patterns were identified for 
cases that involved > 25 % of the 
population. Fig. 11 shows that  
the longest search patterns were 
only three AOI locations, a result 
that was somewhat surprising.

The search patterns are 
three-digit numbers that corre-
spond to a sequence of locations, but 
the coding for the locations is the 
same among all six questions.  
The six questions are grouped into 
two sets because three of them 
have one more spectral area than 
the others. The search patterns are 
very different for the two groups. 
Among the experts, eight out of 
nine patterns have the correct 
structural answer and resonance 
feature. However, among the 
novices, only one out of nine 
patterns do the same. Clearly, the 
former group has a significantly 
different strategy and method. 
Efforts continue at further eluci-
dating the different strategies and 
at understanding what interven-
tions can move students from the 
novice to the expert group.
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Figure 8. Student solution to drawing a limiting reagent (Pienta, 2017).

Additional eye-tracking 

experiments have  

been used to  

examine students’ 

interpretation of 

proton NMR spectra

Efforts continue at 

further elucidating the 

different strategies and 

at understanding what 

interventions can move 

students from the novice 

to the expert group



Summary
An important aspect related to 

the teaching and learning of 
chemistry for undergraduate 
students involves the ways that 
instructors assess or evaluate 
them. In order to better under-
stand students’ approach to 
problem solving, basic research 
has been conducted using several 
different methods. Browser-based 
tools enable researchers to collect 
quantitative data from large 
numbers of students across 
different courses and institutions. 
In turn, this enabled the examina-
tion of a large number of vari-
ables and factors among some 
ideal gas law and stoichiometry 
questions and to investigate the 
role of cognitive load. Two differ-
ent tools for examining student-
drawn representations provide 
information about their success 
and approaches. Thus, drawing 
Lewis structures or representa-
tions of the particulate nature of 
matter provides insight into their 
misconceptions and approaches, 
again from the analysis of large 
numbers of attempts across 
different courses. The use of 
eye-tracking hardware in a series 
of different experiments estab-
lished other methods for examin-
ing problem solving. Gaze-dura-
tion differences among more and 
less successful students attempt-
ing the word problems suggests a 
means of characterizing or 
identifying them. Search patterns 
from experts and novices at 
relating H-NMR spectral data to 
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Figure 9. Relating H-NMR spectra and structures of organic molecules (Topczew ski 
et al., 2017).

Figure 10. H-NMR spectral question divided into areas of interest (AOIs) for anal-
ysis (Topczewski et al., 2017).

Figure 11. Search patterns for series of location within areas of interest found in  
> 25 % of users (Topczewski et al., 2017).

An important aspect 

related to the teaching 

and learning of 

chemistry for 

undergraduate students 

involves the ways that 

instructors assess or 

evaluate them
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appropriate chemical structures 
gives insights into strategies and 
provides a mean to test interven-
tions to help the novices become 
more successful. All of these 
technology-based approaches 
suggest a wide variety of addi-
tional experiments relevant to 
chemistry education research.
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